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Abstract 

Background:  Most genomic predictions use a unique population that is split into a training and a validation set. 
However, genomic prediction using genetically heterogeneous training sets could provide more flexibility when 
constructing the training sets in small populations. The aim of our study was to investigate the potential of genomic 
prediction of feed efficiency related traits using training sets that combine animals from two different, but genetically-
related lines. We compared realized prediction accuracy and prediction bias for different training set compositions for 
five production traits.

Results:  Genomic breeding values (GEBV) were predicted using the single-step genomic best linear unbiased pre-
diction method in six scenarios applied iteratively to two genetically-related lines (i.e. 12 scenarios). The objective for 
all scenarios was to predict GEBV of pigs in the last three generations (~ 400 pigs, G7 to G9) of a given line. For each 
line, a control scenario was set up with a training set that included only animals from that line (target line). For all 
traits, adding more animals from the other line to the training set did not increase prediction accuracy compared to 
the control scenario. A small decrease in prediction accuracies was found for average daily gain, backfat thickness, and 
daily feed intake as the number of animals from the target line decreased in the training set. Including more animals 
from the other line did not decrease prediction accuracy for feed conversion ratio and residual feed intake, which 
were both highly affected by selection within lines. However, prediction biases were systematic for these cases and 
might be reduced with bivariate analyses.

Conclusions:  Our results show that genomic prediction using a training set that includes animals from genetically-
related lines can be as accurate as genomic prediction using a training set from the target population. With combined 
reference sets, accuracy increased for traits that were highly affected by selection. Our results provide insights into the 
design of reference populations, especially to initiate genomic selection in small-sized lines, for which the number of 
historical samples is small and that are developed simultaneously. This applies especially to poultry and pig breeding 
and to other crossbreeding schemes.
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Background
Given the large economic impact of feed efficiency in 
the swine industry, its evaluation requires accurate esti-
mation of breeding values (BV) and selection of animals 
[1]. The most commonly used criterion to measure feed 
efficiency in livestock species is feed conversion ratio 
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(FCR) and is defined as feed intake per unit of live weight 
gain [2]. However, in 1963, residual feed intake (RFI) was 
introduced in cattle as an alternative criterion for feed 
efficiency [3]. In general, FCR and RFI are highly geneti-
cally correlated [4]. Nevertheless, selection of animals 
based on FCR can be accompanied by undesirable cor-
related responses in other traits such as appetite [5, 6], 
whereas selection for RFI is almost independent of these 
traits since RFI is feed intake adjusted for production 
trait by linear regression. Due to the high cost of meas-
uring daily feed intake (DFI), and thus RFI and FCR [7], 
fewer phenotypic records are available, which reduces 
the accuracy of selection. Genomic selection has the 
potential to improve pig feed efficiency in some popu-
lations [8, 9]. Recent advances in genomic evaluation 
methodologies, such as single-step genomic best linear 
unbiased prediction (ssGBLUP), enable more accurate 
evaluations in small populations. The ssGBLUP com-
bines phenotypic, genotypic, and pedigree information 
in a single genomic evaluation of animals [10–13]. The 
number of animals in the reference population has been 
shown to affect the accuracy of genomic predictions [14]. 
Multi-breed or admixed genomic evaluations have been 
proposed to increase the number of animals in reference 
sets for small populations [15], resulting in increases in 
prediction accuracy in some cases [16]. A study on multi-
breed genomic evaluation using real data from Holstein 
and Jersey bulls showed that using a combined reference 
population resulted in comparable accuracies of genomic 
estimated breeding values (GEBV) in purebred validation 
sets, or exceeded that achieved with a purebred refer-
ence population of the same breed [17]. Adding a smaller 
population, i.e. Brown Swiss, to a reference population 
of Holstein and Jersey bulls resulted in slight increases 
in accuracy of predictions when breeds were considered 
as a single, joint population, while slight increases in 
accuracy were also observed if the breeds were treated 
as genetically-related traits [18]. Simulation studies with 
mixed reference populations also showed increases in 
prediction accuracy. A simulation study on genomic pre-
diction across multiple populations in cattle showed that 
adding relatively few individuals from another popula-
tion to a training set substantially increased the accuracy 
of predictions in the first population, regardless of the 
heritability (h2) or marker density [19]. Another simu-
lation study reported that genomic predictions using a 
combined versus a single reference population increased 
the accuracy of genomic predictions by 25%, with traits 
with a lower heritability benefiting more from the com-
bination of populations [20]. However, using a combined 
reference population can be challenging if relationships 
between populations are absent: allele frequencies at the 
marker and/or causal loci, or causal variants themselves, 

can differ between populations, [15, 16]. Another limita-
tion for across-breed genomic prediction is the inconsist-
ency of linkage disequilibrium (LD) between markers and 
quantitative trait loci (QTL) between breeds, which is 
one of the assumptions of most genomic prediction mod-
els [17].

Given the presence of (ancestral) relationships between 
animals and the greater consistency of LD between 
genetically-related lines within a breed than between 
breeds that have been separated for decades, using a 
multi-line reference population may be more beneficial 
than using a multi-breed reference population [16]. How-
ever, the changes in allele frequency since separation of 
the lines may still represent a challenge for using a multi-
line reference population [21]. To the best of our knowl-
edge, the use of a multi-line genomic evaluation strategy 
in small, related lines using real data has not been stud-
ied, in spite of the existence of numerous related lines 
worldwide. Our hypothesis was that, in small porcine 
populations with few available ancestral samples, i.e. for 
which it is not possible to build large reference popula-
tions, including information from a genetically-related 
line in the training population could provide similar 
prediction accuracies as a within-line training popula-
tion. Therefore, we explored reference populations with 
different structures that combined data from two lines 
that descended from a common origin, and compared 
the prediction accuracy obtained with that obtained 
when only information from the target line was used for 
training.

Methods
Population and data structure
The data were collected during a selection experiment 
that was conducted at INRAE (UE GenESI, Surgères, 
France, https​://doi.org/10.15454​/1.55724​15481​18584​
7E12) on French Large White pigs. Two lines were estab-
lished by nine generations of divergent selection for RFI 
from 2000 to 2015 [22]. The G0 generation resulted from 
the mating of 30 boars and 30 gilts from generation F0 
using artificial insemination. Among the G0 animals, 
116 boar candidates for selection from all 30 litters were 
tested for RFI to select six extreme founder boars for each 
line (LRFI: low RFI, and HRFI: high RFI). The two lines 
were initiated by mating the selected boars to about 35 
random G0 gilts per line. Inbreeding was minimized at 
each generation. The development of each line continued 
with the selection of six boars out of 96 tested candidates 
in each generation from G1 to G9. In each generation, at 
least one additional parity was produced to evaluate cor-
related responses to selection for production traits on 
both females and castrated males (henceforth referred to 
as response animals). Selection candidates were evaluated 

https://doi.org/10.15454/1.5572415481185847E12
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for RFI from 35 to 95  kg of body weight (BW), and 
response animals were evaluated from 10  weeks of age 
until slaughter (105 kg BW until G5 and 115 kg BW from 
G6 onwards). Animals were raised in four pens per batch 
and at least four batches per generation. Test pens were 
equipped with single-place electronic feeders ACEMA64 
(ACEMO, France). Animals were offered ad  libitum 
access to a pelleted diet based on cereals and soya bean 
meal containing 10 MJ net energy (NE)/kg and 160 g CP/
kg, with a minimum of 0.80  g digestible Lys/MJ NE. In 
each generation, boars were selected based on a fixed RFI 
selection index that was established from pre-computed 
phenotypic correlations between DFI (g/day) and average 
daily gain (ADG, g/day) between 35 and 95 kg BW, and 
live backfat thickness (BFT, mm) at 95 kg BW [23], as RFI 
= DFI − 1.06 × ADG − 37 × BFT. The average metabolic 
BW (AMBW) was the same for all selection candidates 
and therefore excluded from the selection index equa-
tion. Selection candidates had records for feed intake, 
body weight, and live body composition traits. In addi-
tion to these phenotypes, gilts and castrated males had 
records for carcass composition traits [23]. For the pre-
sent study, RFI, FCR, DFI, ADG and BFT were analyzed. 
These traits were available for both selection candidates 
and response animals. The number of observations for 
the five traits for each line are in Table  1. RFI of selec-
tion candidates was computed between 35 and 95 kg BW 
as the residual of a multiple linear regression of DFI on 
the traits included in the selection index. For gilts and 
castrated males from the correlated response batches, 
RFI was estimated from 10  weeks of age to slaughter 
as the residual of a multiple linear regression of DFI on 
AMBW, ADG from 10 weeks of age to slaughter, carcass 
BFT (carcBFT), and lean meat content (LMC; computed 
from cut weights) at slaughter. AMBW was included to 
account for maintenance requirements and the other 
traits were included to account for production require-
ments. [22]. Fixed effects included in the regression 
model to compute RFI of response animals were sex, pen 
size, contemporary group and BW at the beginning of the 
test. Complete pedigree information was collected from 
F0 to G9, plus up to 10 generations of ancestors, and con-
tained 7046 animals (Table 1).

Combining and standardizing traits
Preliminary analyses on the five traits showed high 
genetic correlations between similar traits measured in 
selection candidate and response animals (> 0.80 ± 0.11, 
except 0.75 ± 0.08 between live BFT and carcass BFT). 
Therefore, to increase the amount of information, corre-
sponding traits in selection candidate and response ani-
mals were combined for further analyses. Since animals 
differed in age and BW when measurements were taken, 

for each trait, records from selection candidates were 
standardized to the variance of the corresponding trait in 
the response animals as:

where yRij is the standardized trait i ( i = 1,… 5) for selec-
tion candidate j, ysij is the record of trait i measured on 
animal j , σsi is the phenotypic standard deviation of trait 
i measured on selection candidates, and σRi is the pheno-
typic standard deviation of trait i measured on females 
and castrated males in the response batches. Descriptive 
statistics of these traits are in Table 2.

Single nucleotide polymorphism (SNP) genotyping data 
and imputation
SNP genotyping data were available for all selected boars 
and their mates from G0 to G9, additional pigs from 
response batches of G6 to G8, and all selection candi-
dates in G9. In total, 1647 animals had SNP genotypes, 
of which 286 animals were genotyped with the Porcine 
SNP60v2 BeadChip (Illumina) (64,232 SNPs) and 1361 
animals with the GGP Porcine HD Array (Illumina) 
(68,516 SNPs). Genotype quality control excluded SNPs 
with a call rate lower than 95%, individuals with a call 
rate lower than 90%, SNPs that were not in Hardy–Wein-
berg equilibrium (p < 10−10), SNPs with a minor allele 
frequency lower than 0.01, and individuals with parent–
offspring incompatibility (e.g., opposite homozygotes) 
with at least one parent. The PLINK software was used 
for SNP and individual genotype quality control [24]. 
SNPs on the sex chromosomes were removed. After 
quality control of each SNP chip dataset, the SNPs pre-
sent in each panel were imputed to the alternative panel 
using the FImpute software [25] in a single step. The two 
SNP chips shared 42,800 SNPs. The number of geno-
typed animals retained after imputation was 1643, and 
the final genotype dataset contained 64,233 informative 
SNPs. Thus, all animals had equal genotypic information. 
Genotypes were coded as 0, 1, or 2 for later calculation of 
the genomic relationship matrix. The number of animals 
with genotype data per generation and line is in Table 1.

Model and analyses
Predictions obtained with BLUP are based on the assump-
tion of no genetic differences between subpopulations [26, 
27]. Therefore, to account for selection in our dataset, all 
genetic and genomic analyses were carried out with bivari-
ate approaches, i.e. the five other traits were individually 
paired with the selection index in two-trait model analyses. 
By including the selection criterion, the analyses of other 

yRij =
ysij

σsi
σRi
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Table 1  Numbers of animals in the pedigree and data structure

Ancestors F0 G0 HRFI

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 Total

Pedigree 159 67 104 48 216 297 277 260 270 795 474 292 280 3209

Pedigree only 1 2 89 78 62 68 352 149 5 0 806

Pedigree and genotype only 41 41 42 44 36 47 40 35 42 91 459

ADG

 Phenotype only 0 167 160 149 156 149 304 194 148 93 1520

 Phenotype and genotype 6 6 6 6 6 6 71 73 66 92 338

 Missing 0 0 0 0 0 0 28 23 31 4 86

BFT

 Phenotype only 0 167 160 149 156 149 237 176 62 84 1340

 Phenotype and genotype 6 6 6 6 6 6 71 73 66 92 338

 Missing 0 0 0 0 0 0 95 41 117 13 266

DFI

 Phenotype only 0 166 160 149 156 149 263 182 138 93 1456

 Phenotype and genotype 6 6 6 6 6 6 71 73 66 92 338

 Missing 0 1 0 0 0 0 69 35 41 4 150

FCR

 Phenotype only 0 166 160 148 156 149 263 182 138 93 1455

 Phenotype and genotype 4 6 6 6 6 6 71 73 66 92 336

 Missing 2 1 0 1 0 0 69 35 41 4 153

RFI

 Phenotype only 0 164 159 146 156 143 185 147 56 80 1236

 Phenotype and genotype 6 6 6 6 6 6 71 73 66 92 338

 Missing 0 3 1 3 0 6 147 70 123 17 370

Ancestors 0 G0 LRFI

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 Total

Pedigree 159 67 104 46 203 303 314 327 357 826 481 344 280 3481

Pedigree only 0 1 98 100 107 130 337 132 8 0 913

Pedigree and genotype only 40 35 40 41 43 43 48 55 48 93 486

ADG

 Phenotype only 0 161 159 167 171 178 359 211 203 95 1704

 Phenotype and genotype 6 6 6 6 6 6 74 73 74 90 347

 Missing 0 0 0 0 0 0 8 10 11 2 31

BFT

 Phenotype only 0 161 159 167 171 178 284 206 105 86 1517

 Phenotype and genotype 6 6 6 6 6 6 74 73 74 90 347

 Missing 0 0 0 0 0 83 15 109 1 1 218

DFI

 Phenotype only 0 160 159 167 171 178 316 206 194 95 1646

 Phenotype and genotype 6 6 6 6 6 6 74 73 74 90 347

 Missing 0 1 0 0 0 0 51 15 20 2 89

FCR

 Phenotype only 0 159 159 167 171 178 316 208 195 95 1648

 Phenotype and genotype 6 6 6 6 6 74 73 74 90 347

 Missing 0 2 0 0 0 0 51 13 19 2 87

RFI

 Phenotype only 0 160 158 161 171 173 230 165 101 80 1399

 Phenotype and genotype 6 6 6 6 6 6 74 73 74 90 347

 Missing 0 1 1 6 0 5 137 56 113 17 336

HRFI high RFI line, LRFI low RFI line, Ancestors animals before the base generation, F0 base generation, G0 to G9 generations of selection 0 to 9, RFI residual feed intake, 
ADG average daily gain, FCR feed conversion ratio, DFI daily feed intake, BFT backfat thickness



Page 5 of 15Aliakbari et al. Genet Sel Evol           (2020) 52:57 	

traits are conditioned based on all the information that was 
used for selection [28–30].

Preliminary analyses were carried out using a general lin-
ear model in R (glm procedure) to evaluate the significance 
(p < 0.05) of fixed environmental sources of variation. The 
significant fixed factors included pen size (5 levels: 8, 9, 10, 
11, 12 pigs per pen), herd of birth (2 levels), sex (3 levels), 
and contemporary groups (CG, 99 levels). BW at slaugh-
ter was fitted in the model as a covariate only for BFT. CG 
were defined as animals born in the same week and raised 
in the same enclosure. Litter was fitted as a random envi-
ronmental source of variation and its significance at the 5% 
level was determined using a likelihood ratio test.

The genetic analyses were performed using the 
AIREMLF90 and BLUPF90 software [31] for the BLUP and 
ssGBLUP methods, respectively. Prior to ssGBLUP evalua-
tions, the variance components of the traits were obtained 
using the restricted maximum likelihood algorithm imple-
mented in AIREMLF90. These analyses were performed 
using all available data and only the full pedigree relation-
ship matrix ( A ). Variance components were estimated with 
the bivariate animal mixed model as follows:

where y is the vector of observations for the index and 
one of the five studied traits, b is the vector of fixed 
effects (described above), a is the vector of additive 
genetic effects, l is the vector of litter effects, and e is the 
vector of random residuals. X , Z1 and Z2 are the inci-
dence matrices for b , a , and l , respectively. Distributions 
assumed for the random terms are a ∼ N (0,G0 ⊗ A) , 
l ∼ N (0,Rl ⊗ I) , e ∼ N (0,Re ⊗ I) , where G0 is a 2× 2 
symmetric (co)variance matrix of direct additive genetic 
effects, and Rl and Re are 2× 2 symmetric (co)variances 

y = Xb+ Z1a + Z2l + e

matrices of litter and residual effects, respectively. I 
denotes the identity matrix.

Genomic breeding values were estimated using ssG-
BLUP with the same models in the BLUPF90 software, 
with the previously estimated (co)variances and using 
the H matrix, which is a combined relationship matrix of 
the A matrix and marker-based relationship matrix ( G ) 
of genotyped animals [10, 12]. The G matrix was con-
structed and scaled by 2

∑

{pi(1− pi)} , where pi is the 
frequency of the second allele at locus i , following Van-
Raden [32]. Computation of the H matrices used out-
puts of BLUPF90 ( G ) and the full A matrix, which was 
obtained using the AGHmatrix R package [33]. In all 
scenarios, G had similar average diagonal elements as the 
pedigree relationship matrix for the genotyped animals 
( A22).

Scenarios
Two symmetric series of six scenarios, one for each line, 
were defined for genomic prediction. An overview of the 
scenarios is shown in Fig. 1. In all scenarios, genotyped 
animals of the last three generations (G7 to G9, 433 pigs 
for the LRFI and 399 pigs for the HRFI line) were consid-
ered for validation in a given line (target line), and their 
information was removed from the training dataset.

The training sets were structured based on which gen-
erations and line were used. Scenario 1 comprised only 
animals from the target line and was the control scenario 
since it represented a routine genomic prediction design 
where all data would be available from the same line. All 
other scenarios were compared to this control scenario 
to evaluate which combination of training populations 
from the two lines achieved a prediction accuracy simi-
lar to the control scenario. Scenarios 2 and 3 included 
the training set of scenario 1 and in addition, either the 

Table 2  Descriptive statistics of the data for the studied traits in the HRFI and LRFI lines

HRFI high RFI line, LRFI low RFI line, ADG average daily gain (kg/day), BFT backfat thickness (mm), DFI daily feed intake (kg/day), FCR feed conversion ratio (kg/kg), RFI 
residual feed intake (kg/day)

Line Trait Number of records Minimum Maximum Average Coefficient 
of variation

HRFI ADG 1868 0.44 1.07 0.76 11.03

BFT 1687 9.67 49.27 27.33 26.62

DFI 1802 1.37 3.20 2.18 12.54

FCR 1799 2.13 3.81 2.8 9.26

RFI 1581 − 0.29 0.86 0.05 –

LRFI ADG 2053 0.45 1.06 0.76 10.69

BFT 1866 10.00 44.63 26.45 24.60

DFI 1995 1.05 2.92 2.01 12.91

FCR 1997 1.72 3.70 2.60 9.11

RFI 1748 − 0.56 0.46 − 0.04 –
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animals from G4 to G9 (scenario 2), or G7 to G9 (sce-
nario 3) of the other line.

For scenarios 4 to 6, animals from the target line in the 
training set were limited to the three generations nearest 
to the validation set (G4 to G6). In scenarios 4 and 5, the 
contribution to the training set of the animals from the 
other line was as in scenario 2 (G4 to G9) and scenario 
3 (G7 to G9), respectively. For scenario 6, the number of 
animals in the training set was close to that of scenario 
1 and only animals from the G9 generation of the other 
line. Performance data of animals from the generation 
and line combinations that did not contribute to the 
training or validation sets were removed from the analy-
sis, but their pedigree information was kept in order to 
trace relationships back to the founding generation. For 
example, phenotypes and genotypes of animals from G0 
to G3 of both lines were removed for scenario 4, since 
they were not part of the training or validation sets. The 
number of genotyped animals in the training and valida-
tion sets for the 12 scenarios are in Table 3.

Accuracy and bias of genomic predictions
Usually the correlation between the vector of estimated 
breeding values ( EBV ) to be evaluated and the vector 
of true breeding values ( TBV ), r(TBV,EBV) , cannot be 
computed. In the literature, multiple criteria have been 
proposed to quantify and compare prediction accura-
cies of genomic predictions between training and vali-
dation set structures and between prediction methods. 
Cross-validation approaches are often conducted based 
on r

(

EBV, y∗
)

 , where y∗ is either the vector of phe-
notypes adjusted for fixed effects or the vector of der-
egressed EBV of the validation set. Thus, a widely used 
criterion is r

(

EBV, y∗
)

/
√

h2 , where h2 is the heritability 
of the trait. However, this criterion requires all the gen-
otyped animals to have a sufficiently accurate y∗ value 
[34]. When y∗ is an adjusted phenotype of the animal’s 
own measurement, it suffers from the inability to adjust 
for the random residual effects. In the optimum situa-
tion, the expected value of the correlation would then be 
the square root of heritability [35]. Alternatively, using an 

Fig. 1  Design of scenarios to predict validation animals in HRFI (a) and LRFI (b) lines
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EBV obtained from a complete dataset as the best pre-
dictor of TBV would cause autocorrelation between the 
reference and evaluated EBV when the training and vali-
dation sets are closely related through the pedigree, lead-
ing to higher correlations [35]. Legarra and Reverter [34] 
proposed to complement the cross-validation approach 
with a semi-parametric approach that can be used in a 
large number of cases, with the advantage of not requir-
ing knowledge of the TBV or adjustment of phenotypes. 
The underlying assumptions of this approach are (1) the 
variance components are similar in the training and vali-
dation datasets, and (2) the validation set is sufficiently 
diverse and large (i.e. composed of various families). In 
brief, with their approach, the correlation between EBV 
using part of the dataset (partial) and EBV obtained using 
the whole dataset results in an estimator of the ratio of 
the accuracies of the EBV from these two datasets. We 
followed this approach to evaluate the potential for 
genomic prediction when including data from a related 
line compared to genomic prediction using all data 
from the target line, which will be referred to as GEBVw 
(GEBV obtained using the whole dataset),  i.e., to obtain 
GEBVw for the validation set of each line, two separate 
ssGBLUP analyses were performed (one per line). GEBVp 
(GEBV obtained using partial dataset) were the GEBV 
obtained from the six scenarios for the validation sets 
in each target line. The criterion for prediction accuracy 
for each trait and each scenario was then the correlation 
between GEBVp and GEBVw , r

(

GEBVp,GEBVw

)

 . Bias of 
the genomic predictions was computed as the deviation 
of the regression coefficient of GEBVw on GEBVp from 1, 
as also proposed in [34].

Standard errors of the prediction accuracy correlations, 
r, were obtained as 

√

[(

1− r2
)

/(n− 2)
]

 , where n is the 
number of animals used to obtain correlations in the vali-
dation sets. Differences between correlations in different 
scenarios were tested using the Williams t-test in the 

psych R package [36–38]. Significant differences between 
each scenario and the control scenario (scenario 1) are 
reported to identify the scenarios that provide prediction 
accuracies similar to the control scenario.

Relationships between training and validation sets
For each scenario, the maximum, average, and minimum 
relationship coefficients between training and validation 
sets in the H matrix were computed. To distinguish the 
strength of relationships originating from the two lines, 
all three measurements were computed separately for 
pigs of the validation set with the subset of the training 
set that belonged to (1) the target line and (2) the other 
line. The average relationships were calculated as the 
mean of the off-diagonal elements of the corresponding 
relationship matrices for the genotyped individuals.

Results
Variance components
The five studied traits showed low to moderate herit-
abilities that ranged from 0.12 ± 0.02 (RFI) to 0.36 ± 0.05 
(BFT) (Table 4). The ratio of litter effect variance to phe-
notypic variance ( l2 ) was lower than the heritability for 
all traits, ranging from 0.07 ± 0.02 (FCR) to 0.12 ± 0.02 
(BFT).

Prediction accuracies
Prediction accuracies, r

(

GEBVp,GEBVw

)

 , for the dif-
ferent scenarios are shown in Fig.  2 for the two lines. 
Accuracies ranged from 0.07 to 0.73, depending on the 
validation line, trait, and scenario. The tested scenarios 
could be classified into two groups based on their design 
and how it affected the prediction accuracy of each trait. 
Removing the earlier generations of the target line from 
the training set (from scenarios 1, 2, 3 to scenarios 4, 5, 
6) tended to decrease the prediction accuracy for ADG, 
BFT, and DFI, while FCR and RFI showed different pat-
terns in response to changes in the structure of the train-
ing set.

Table 3  Number of  genotyped animals in  the  training 
and  validation sets for  the  six scenarios for  the  HRFI 
and LRFI validation sets

HRFI high RFI line, LRFI low RFI line

HRFI LRFI

Training Validation Training Validation

Scenario 1 398 399 400 433

Scenario 2 1051 399 1005 433

Scenario 3 831 399 799 433

Scenario 4 859 399 825 433

Scenario 5 639 399 619 433

Scenario 6 389 399 403 433

Table 4  Estimates of  variance components (SE) 
of the studied traits

ADG average daily gain (g/day), BFT backfat thickness (mm), DFI daily feed intake 
(kg/day), FCR feed conversion ratio (kg/kg), RFI residual feed intake (kg/day)
a  As a proportion of phenotypic variance

Trait Phenotypic variance Heritability Litter effectsa

ADG 5811.70 (164.75) 0.25 (0.04) 0.10 (0.02)

BFT 14.37 (0.47) 0.36 (0.05) 0.12 (0.02)

DFI 0.04 (0.001) 0.24 (0.04) 0.09 (0.02)

FCR 0.04 (0.001) 0.24 (0.04) 0.07 (0.02)

RFI 0.01 (0.004) 0.12 (0.02) 0.08 (0.02)
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The differences in prediction accuracies for ADG, BFT 
and DFI from scenario 1 to scenario 2 and 3 showed that 
the inclusion of different generations of the other line in 
the training set led to marginal changes in accuracy, with 
decreased correlations in most cases (BFT in the HRFI 
line and DFI). In scenarios 4, 5, and 6, the proportion of 
animals from the target line was low in the training set 
compared to scenarios 1, 2, and 3. This reduction gen-
erally led to a decrease in the prediction accuracies for 
ADG, BFT, and DFI compared to scenario 1. However, 
these differences in accuracy were only significant for 
ADG and BFT in the HRFI line and for DFI in the LRFI 
line.

Scenarios for FCR and RFI showed different patterns 
compared to the previous traits. Prediction accuracies for 
FCR followed a pattern similar to those of the other traits 
for all scenarios, except for scenario 3, which showed a 
17 to 21% higher accuracy compared to scenario 1. Pre-
diction accuracies for RFI decreased from scenario 1 

to scenario 2, and scenario 1 to scenario 4 for the LRFI 
target line, which were the scenarios with the maximum 
number of individuals from the other line in the training 
set. In the other scenarios, the prediction accuracies for 
RFI were similar or higher than for scenario 1.

The prediction accuracies for FCR in all scenarios, 
except scenario 6, were higher for validation animals in 
the HRFI line than in the LRFI line. The average differ-
ences in accuracy by trait ranged from + 0.07 for ADG to 
+ 0.40 for RFI (Fig.2).

Prediction biases
Overall, regression coefficients of GEBVw on GEBVp were 
consistently below 1 for FCR and RFI for both validation 
sets (Fig.  3). Regression coefficients for these two traits 
also showed more variation across the scenarios com-
pared to ADG, BFT and DFI.

Bias for GEBV in the HRFI validation set followed the 
same trend, but at different magnitudes, for all traits, 

Fig. 2  Correlations between GEBVp and GEBVw, and their SE as error bars for the HRFI (a) and LRFI (b) lines. *Significant difference with scenarios 1 
(control) based on the Williams t-test at a 0.05 level. RFI residual feed intake, ADG average daily gain, FCR feed conversion ratio, DFI daily feed intake, 
BFT backfat thickness
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except ADG (Fig. 3a). On average, scenarios 1, 2, and 3 
showed less biases than scenario 4, 5, and 6 for BFT, DFI, 
and FCR. The regression coefficient in scenario 1 was 
equal to 0.98 for RFI, slightly higher than 1 for BFT (1.08) 
and DFI (1.19), and lower than 1 for ADG (0.83) and FCR 
(0.74).

Prediction of GEBV for the LRFI validation set did 
not follow the same pattern of change across scenarios 
between the traits. Regression coefficients of all scenar-
ios showed biases smaller than 1 for BFT, FCR, and RFI 
(Fig.  3b). Biases were smallest for DFI (scenario 6) and 
ADG (scenarios 1, 5 and 6). Overall, biases of GEBV for 
this line were moderate for scenario 6 compared to the 
other scenarios, except for BFT (0.53). Biases were larger 
for scenarios 2 and 4, compared to scenarios 5 and 6, for 
all traits except for BFT.

Relationships between and within training and validation 
sets
Relationships between the validation set and the training 
individuals from the target line were on average higher in 
scenarios 4 to 6 than in scenarios 1 to 3 (Fig. 4a and c). 
The highest average was obtained for scenario 4 (around 
0.25) and the smallest average for scenarios 1 and 3 
(around 0.16 and 0.17). The maximum relationship coef-
ficient between these two cohorts was greater than 0.66 
for all scenarios, with the smallest maximum found for 
scenario 1 when the training set included only individuals 
from the target line, and the highest maximum for sce-
nario 4 (around 0.78), when the relative number of ani-
mals from the other line in the training set was larger.

Relationship coefficients between the validation set 
and the training individuals of the other line were lower 
than those with the training individuals of the target line, 
but the maximum values were reached for scenario 6, i.e. 
equal to 0.18 and 0.20 for the HRFI and LRFI target lines, 

Fig. 3  Bias (regression coefficients of GEBVw on GEBVp) for the HRFI (a) and LRFI (b) lines. RFI residual feed intake, ADG average daily gain, FCR feed 
conversion ratio, DFI daily feed intake, BFT backfat thickness
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respectively (Fig. 4b and d). All other scenarios had lower 
maximum relationships, ranging from 0.12 to 0.15.

Discussion
The aim of our study was to investigate different com-
binations of two lines derived from a common origin 
to evaluate the potential of building a training set for 

the genomic prediction of feed efficiency related traits 
in lines that are small or do not have much data avail-
able. Multiplying by ~ 2.5 (scenario 2), ~ 2 (scenarios 3 
and 4), and ~ 1.5 times (scenario 5) the number of gen-
otyped individuals in the training set by recruiting ani-
mals from the other line show no or little increase of 
prediction accuracy. This would probably not justify the 

Fig. 4  Average, minimum and maximum relationship coefficients in the H matrix between individuals of the validation set, and individuals of the 
training set from the target line and from the reverse line, for a and b the HRFI target line, for c and d the LRFI target line
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additional genotyping costs involved. However, they can 
be considered for practical implementation of combined 
training sets since, in most cases, the prediction accura-
cies obtained in scenarios 5 and 6 were similar to those 
of the control scenario 1. These scenarios reflect most 
of the practical situations targeted in our study. Indeed, 
for breeding programs in small populations, phenotypic 
or genotypic information of individuals from earlier gen-
erations might not be available, and the sampling size 
in recent generations might be limited to a few hun-
dred. Our results show that, a training population that 
includes recent generations of one population and data 
from a more distant subpopulation, could be a solution 
to achieve prediction accuracies similar to what would be 
achieved if data were available for individuals of the same 
population. This could even improve the prediction accu-
racies for traits under selection.

Computation of prediction accuracies and biases
Variance components of the evaluated traits were esti-
mated using the A matrix on the full dataset with both 
lines combined. All estimated heritabilities were in the 
range of values reported in the literature for these traits 
[8, 39–42]. Using these variance components, the accu-
racy of GEBV was computed for the six scenarios to pre-
dict validation animals from each line using ssGBLUP. 
Prediction accuracies were computed using a cross-
validation method combined with a semi-parametric 
approach [30]. Indeed, in our case, accuracies of the 
adjusted phenotypes or of deregressed EBV were too 
low to be used in a criterion such as r

(

GEBVp, y
∗
)

/
√

h2 , 
since only two-thirds of the individuals had their own 
phenotype. This would result in larger standard errors 
of the correlations and, thus, less power to test differ-
ences between scenarios, as shown in Additional file  1: 
Figures  S1 and S2. The underlying assumptions of the 
semi-parametric approach are that (1) the validation set 
is sufficiently diverse and large (i.e. composed of various 
families), and (2) variance components are similar in the 
training and validation datasets. The first assumption was 
well covered in our study, since all breeding individu-
als, plus some progeny of each family, were phenotyped 
and genotyped. The second assumption was potentially 
less covered, which could explain some of the biases 
in prediction observed. Indeed, when estimating vari-
ance components separately in the two lines, different 
residual variances were estimated for some traits, result-
ing in lower heritability estimates for DFI (24%), FCR 
(43%), and RFI (22%) in the LRFI line than in the HRFI 
line. Legarra and Reverter [30] indicated that inflation of 
predictions in one or the other dataset due to changes in 
variances can cause biased GEBV. Thus, we also tested 
the use of estimates of variance components from the 

target line for the GEBV predictions, but this resulted in 
increases in biases by 0.016 to 0.121 in all situations but 
one (results not shown). In practice, scaling the observa-
tions by the residual or phenotypic standard deviations, 
or accounting for the heterogeneity of residual variance 
across lines, could be considered to account for such dif-
ferences, as proposed by Reverter et  al. [43] for hetero-
geneous variances across herds. An alternative could be 
to run bivariate analyses to consider correlated traits 
in the two lines, instead of a single trait across the two 
lines. Nevertheless, in our populations, estimates of the 
genetic variance of RFI as the trait under selection were 
consistent over the nine generations in each line. There-
fore, differences in observed accuracy and bias between 
lines could not be explained by the heterogeneity of the 
genetic variance over the nine generations for the trait 
under selection.

Prediction accuracies for production traits
Although production traits and ssGBLUP have been 
discussed in the literature, few investigations have ana-
lyzed such traits in pigs with this method. Therefore, 
in the discussion that follows, we refer to published 
genomic prediction studies on these traits that often 
use other methods. Our objective in this part is to vali-
date the prediction accuracies obtained with scenario 1, 
in which the structure of the training population is close 
to those of previous studies. When comparing studies, 
it is worth noting that ssGBLUP generally has a higher 
accuracy than the usual GBLUP or Bayesian approaches 
that use only data of genotyped animals. Thus in theory, 
the comparisons should favor ssGBLUP approaches. 
However, most previous studies were based on predic-
tion to a single generation of candidates, which could 
favor higher prediction accuracies. In spite of these dif-
ferences, overall, our estimates were within the range of 
accuracies reported in the literature, except for FCR and 
RFI, for which accuracies were higher in the HRFI valida-
tion set and lower in the LRFI line than those reported 
in the literature. In an investigation on 8113 Danish 
Duroc pigs with 60K imputed SNP genotyping infor-
mation, an r

(

GEBVp, y
∗
)

/
√

h2 of 0.41 was reported for 
ADG [41]. In a study with 620 commercial boars, an 
r
(

GEBVp, y
∗
)

/
√

h2 of 0.61 was reported for BFT with 
ridge regression BLUP (RR-BLUP) and of 0.56 with Bayes-
ian LASSO [39]. A similar value of 0.55 was reported 
for Danish Duroc pigs [41]. Zhang et al. [9] reported an 
r
(

GEBVp, y
∗
)

/
√

h2 of 0.38 for DFI in a Duroc popula-
tion using a 80K SNP chip and the GBLUP method in a 
design with 1167 training animals and 196 validation ani-
mals. They reported a higher accuracy (0.45) when using 
a 650k SNP chip and the BayesB method. Prediction 
accuracies of GEBV for FCR and RFI are rarely reported 
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in the literature. Christensen et al. [8] reported a predic-
tion accuracy of 0.16 for FCR using a bivariate ssGBLUP 
model. Jiao et al. [42] obtained a low prediction accuracy 
of 0.09 for RFI (measured as r

(

GEBVp, y
∗
)

/
√

h2 ) using 
the BayesA method with 1047 training animals and 516 
validation animals for the Duroc boars. Thus, overall in 
pig studies, prediction accuracies are low to moderate for 
ADG and BFT, and low for feed efficiency traits.

Prediction accuracies depending on the training set 
composition
Compared to FCR and RFI, ADG, BFT, and DFI showed 
different changes in prediction accuracy compared to 
scenario 1 when the structure of the training set was 
changed. For ADG, BFT, and DFI, removing the ear-
lier generations of the target line from the training set 
(from scenarios 2 and 3 to scenarios 4, 5 and 6) gener-
ally decreased prediction accuracy to a lesser extent. The 
average and maximum relationships between the valida-
tion set and the training subsets were higher in scenarios 
4, 5, and 6 than in scenario 1. The maximum relationship 
between the validation set and the training subsets, which 
was previously recommended as an indicator of poten-
tial accuracies [44], was lowest in scenario 1 and highest 
in scenario 4, likely due to changes in allele frequencies 
between the early and late generations within a line. This 
implies that the general decrease in accuracy in the sce-
narios 4, 5, and 6 could be attributed neither to these 
changes in relationships between sets, nor to the differ-
ences in prediction accuracies between lines. Moreover, 
the accuracy of GEBV resulting from ssGBLUP analyses 
should be less sensitive to the structure of the set of gen-
otyped animals, and accordingly, to the strength of rela-
tionships between and within training and validation sets 
[45] because the H matrix aggregates information from 
both A and A22 . This structure of the H matrix has two 
major effects on the GEBV of a given animal: first, it con-
tributes the parent average EBV of the animal using the 
A matrix, and second, it adjusts for the different levels of 
relationships of the animal with other genotyped animals 
using the A22 matrix [45, 46]. de Roos et al. [19] reported 
that the benefits of combining populations in a training 
set are greatest when the populations have diverged for 
only a few generations and when the heritability of the 
trait is low. They also showed that increasing the num-
ber of animals from a given population in the training set 
increased prediction accuracy in that population. Con-
sidering that de Roos et al. [19] did not include the effect 
of selection in their simulations, this could partly explain 
our results for ADG, BFT, and DFI.

Impact of selection on accuracy and bias of predictions
The changes of accuracy across the scenarios were 
more diverse for RFI and FCR, with either increases or 
relatively similar accuracies compared to scenario 1. In 
some cases, the accuracy even increased as genotypes 
of closer generations were eliminated from the training 
set, which could be regarded as an effect of the differ-
ent relationships between training and validation sets in 
these scenarios. Regarding the low prediction accuracy 
reported for FCR and RFI in our results and in the lit-
erature, denser SNP genotyping could probably increase 
the accuracy of predictions by better capturing the dif-
ferences in LD between the lines. In addition, for low 
heritability traits, such as RFI in our study, large training 
populations have been reported to increase the accuracy 
of GEBV [47–49]. However, given that scenarios 5 and 
6 resulted in accuracies that were comparable to that of 
the control scenario for FCR and in greater accuracies 
for RFI, they can be considered as optimum scenarios 
for an across-line genomic prediction program. Based on 
results from simulation, Pszczola et al. [50] declared that 
minimizing relationships within the reference popula-
tion and maximizing them between training and valida-
tion sets maximizes the accuracy of genomic predictions. 
This means that including a diverse set of animals in the 
training set is desirable to some extent. This is consistent 
with our results for FCR and RFI, for which selection cre-
ated two diverse sets of animals. For example, in scenario 
6, including animals from G4 to G6 of the target line in 
the training set provided sufficient genetic links between 
training and validation sets, and animals from the G9 
generation of the other line provided additional diversity 
to the training set. Overall, it seems that including ani-
mals from later generations of both lines (more diverse 
animals) in the training set contributed to higher accura-
cies of GEBV in the validation set for FCR and RFI. This 
might be because the SNP effects segregating in the vali-
dation set were better estimated with such a training set.

Overall, the comparison of accuracies between scenar-
ios 4 to 6 and scenario 1 did not show an obvious effect of 
the removal of data of earlier generations from the train-
ing dataset. In a study using six levels of truncated data of 
past generations, accuracies of GEBV of young genotyped 
pigs were very similar for various reproductive traits [51].

Bias of genomic predictions
Our results showed that GEBV were more biased for 
traits that were more affected by selection, especially 
when early generations of the target line were not 
included in the training set. The scenarios that yielded 
better accuracies were not those with the smaller biases, 
except for FCR and RFI, for which predictions were low 
and their regression coefficients were systematically 
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below 1. The average and maximum relationships 
between training and validation sets did not affect the 
prediction biases in the same way for all traits, which 
could be due to the effect of selection. Selection in his-
torical generations has been shown to result in consider-
able biases in EBV or GEBV [34, 52]. Tonussi et al. [53] 
emphasized that, to have accurate and unbiased GEBV 
with the ssGBLUP method, the G matrix should be com-
patible with the A22 . Inappropriate merging of these 
matrices can originate from ignoring inbreeding in the 
structure of A and from changes in allele frequencies at 
QTL for the traits under selection. In our scenarios, the 
effect of selection in the last three generations of the 
validation sets was not explicitly accounted for. However, 
changes in marker allele frequencies in those generations 
were accounted for through the G matrix. Furthermore, 
the (co)variances used for genomic predictions were 
obtained from bivariate analyses including the  selec-
tion criterion using the whole dataset (including valida-
tion generations). Therefore, there should be no effect of 
selection on the estimations of the variance components, 
and the prediction bias of the GEBVs should not be due 
to biased variance components. Computing separate 
accuracies and biases for sires (heavily selected) versus 
dams (not directly selected), could enable quantification 
of the effect of selection on the prediction biases. How-
ever, on the one hand, the dams had lower individual 
accuracies (no own phenotype), and on the other hand, 
only 18 sires were selected per line in these generations. 
Therefore, the resulting prediction accuracies and biases 
differed between sires and dams due to factors other than 
just the effect of selection and no clear conclusion could 
be reached. Finally, it should be mentioned that these 
three generations were combined into the validation set 
in our study to have enough individuals, but in practice, 
new candidates to be predicted pertain to a single unse-
lected cohort, therefore this selection effect would be 
small and likely negligible.

Heritability, marker density and size of the training 
population have been shown to be important factors to 
control biases of prediction [54]. Therefore, the biases 
for some scenarios in this study could be explained by 
the low to medium heritability of the traits, the medium 
marker density information, and the small number of 
individuals in the training population. Testing similar 
prediction scenarios while ignoring pedigree relation-
ships in the non-genotyped generations would lead to 
substantially biased predictions, especially for traits 
affected by selection (for instance, 1.61 for RFI predic-
tions in the HRFI line for scenario 6). Combining full 
pedigree and genomic information appeared to limit 
bias, which is consistent with Tonussi et al. [53].

Conclusions
The results of our study show that genomic prediction 
using a training set that includes animals from related 
lines selected in different directions could be as accu-
rate as genomic prediction using a within-line training 
set. Thus, this can be a solution to create a reference set 
in the case of small populations, or when ancestral sam-
ples are not available at low additional costs. Combined 
reference sets had better prediction accuracies for traits 
that were highly affected by selection, which can be 
attributed to the inclusion of more diverse animals in the 
training set. Overall, among all evaluated scenarios, sce-
narios 5 and 6 showed optimal accuracies in most cases, 
which is consistent with our hypothesis that data from a 
related line can be used in a combined training popula-
tion for genomic predictions without losing prediction 
accuracy. Our results also proved that absence of phe-
notypic records from past generations did not affect pre-
diction accuracy but increased bias of predictions. Some 
of these issues could be solved by using bivariate analy-
ses or models with heterogeneous variances to better 
account for changes in variances with selection in differ-
ent lines. Taken together, the results of our study provide 
insights into the design of reference populations for small 
populations, particularly when lines are being developed 
simultaneously, which is common in poultry and pig 
industries, and some plant breeding plans. This strategy 
can be recommended to initiate a genomic selection pro-
gram when historical samples are not available, or when 
two lines are considered and genotyping costs need to be 
limited.
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